deep learning - Theano multiplying by zero -


can explain me meaning behind these 2 lines of code here: https://github.com/newmu/theano-tutorials/blob/master/4_modern_net.py

    acc = theano.shared(p.get_value() * 0.)     acc_new = rho * acc + (1 - rho) * g ** 2 

is mistake? why instantiate acc 0 , multiply rho in next line? looks not achieve way , remain zero. there difference if replace "rho * acc" "acc"?

the full function given below:

def rmsprop(cost, params, lr=0.001, rho=0.9, epsilon=1e-6):     grads = t.grad(cost=cost, wrt=params)     updates = []     p, g in zip(params, grads):         acc = theano.shared(p.get_value() * 0.)         acc_new = rho * acc + (1 - rho) * g ** 2         gradient_scaling = t.sqrt(acc_new + epsilon)         g = g / gradient_scaling         updates.append((acc, acc_new))         updates.append((p, p - lr * g))     return updates 

this way tell theano "create shared variable , initialize value 0 in same shape p."

this rmsprop method symbolic method. not compute rmsprop parameter updates, tells theano how parameter updates should computed when eventual theano function executed.

if further down the tutorial code linked to you'll see symbolic execution graph parameter updates constructed rmsprop via call on line 67. these updates compiled theano function called train in python on line 69 , train function executed many times on line 74 within loops of lines 72 , 73. python function rmsprop called once, irrespective of how many times train function called within loops on lines 72 , 73.

within rmsprop, telling theano that, each parameter p, need new theano variable initial value has same shape p , 0. throughout. go on tell theano how should update both new variable (unnamed far theano concerned named acc in python) , how update parameter p itself. these commands not alter either p or acc, tell theano how p , acc should updated later, once function has been compiled (line 69) each time executed (line 74).

the function executions on line 74 not call rmsprop python function, execute compiled version of rmsprop. there no initialization inside compiled version because happened in python version of rmsprop. each train execution of line acc_new = rho * acc + (1 - rho) * g ** 2 use current value of acc not initial value.


Comments

Popular posts from this blog

angularjs - ADAL JS Angular- WebAPI add a new role claim to the token -

node.js - Using Node without global install -

php - CakePHP HttpSockets send array of paramms -