python - resampling non-time-series data -
i have data i'm handling dataframes , pandas. contain 10 000 rows , 6 columns.
the problem is, have done several trials , different datasets have different index numbers. (it's "force - length" testing several materials , of course measurement points not alined perfectly.)
now idea was, "resample" data using index contains value length. seems resampling function in pandas available datetime datatypes.
i tried convert index via to_datetime , succeeded. after resampling, need original scale. kind of from_datetime function.
is there way?
or on wrong track , should better use functions groupby?
thank already!
edit:
sorry not asking enough. i'm unexperienced python user , new forum..
data loks below. lenght usesed index. of dataframes have few woulf nice allign them same "framerate" , cut them e.g. can compare different datasets.
the idea tried one:
df_1_dt = df_1 #generate table conversion df_1_dt.index = pd.to_datetime(df_1_dt.index, unit='s') # convert simulating seconds.. idea?! df_1_dt_rs= df_1_dt # generate df resampling df_1_dt_rs = df_1_dt_rs.resample (rule='s') #resample generatet time
data:
+---------------------------------------------------+ ¦ index (lenght) ¦ force1 ¦ force2 ¦ ¦-------------------+---------------+---------------¦ ¦ 8.04662074828e-06 ¦ 4.74251270294 ¦ 4.72051584721 ¦ ¦ 8.0898882798e-06 ¦ 4.72051584721 ¦ 4.72161570191 ¦ ¦ 1.61797765596e-05 ¦ 4.69851899147 ¦ 4.72271555662 ¦ ¦ 1.65476570973e-05 ¦ 4.65452528 ¦ 4.72491526604 ¦ ¦ 2.41398605024e-05 ¦ 4.67945501539 ¦ 4.72589291467 ¦ ¦ 2.42696630876e-05 ¦ 4.70438475079 ¦ 4.7268705633 ¦ ¦ 9.60953101751e-05 ¦ 4.72931448619 ¦ 4.72784821192 ¦ ¦ 0.00507703541206 ¦ 4.80410369237 ¦ 4.73078115781 ¦ ¦ 0.00513927175509 ¦ 4.87889289856 ¦ 4.7337141037 ¦ ¦ 0.00868965311878 ¦ 4.9349848032 ¦ 4.74251282215 ¦ ¦ 0.00902026197556 ¦ 4.99107670784 ¦ 4.7513115406 ¦ ¦ 0.00929150878827 ¦ 5.10326051712 ¦ 4.76890897751 ¦ ¦ 0.0291729332784 ¦ 5.14945375919 ¦ 4.78650641441 ¦ ¦ 0.0296332588857 ¦ 5.17255038023 ¦ 4.79530513287 ¦ ¦ 0.0297080942518 ¦ 5.19564700127 ¦ 4.80410385132 ¦ ¦ 0.0362595526707 ¦ 5.2187436223 ¦ 4.80850321054 ¦ ¦ 0.0370305483177 ¦ 5.24184024334 ¦ 4.81290256977 ¦ ¦ 0.0381506204153 ¦ 5.28803348541 ¦ 4.82170128822 ¦ ¦ 0.0444440795306 ¦ 5.30783069134 ¦ 4.83050000668 ¦ ¦ 0.0450121369102 ¦ 5.3177292943 ¦ 4.8348993659 ¦ ¦ 0.0453465140473 ¦ 5.32762789726 ¦ 4.83929872513 ¦ ¦ 0.0515533437013 ¦ 5.33752650023 ¦ 4.85359662771 ¦ ¦ 0.05262489708 ¦ 5.34742510319 ¦ 4.8678945303 ¦ ¦ 0.0541273847206 ¦ 5.36722230911 ¦ 4.89649033546 ¦ ¦ 0.0600755845953 ¦ 5.37822067738 ¦ 4.92508614063 ¦ ¦ 0.0607712385295 ¦ 5.38371986151 ¦ 4.93938404322 ¦ ¦ 0.0612954159368 ¦ 5.38921904564 ¦ 4.9536819458 ¦ ¦ 0.0670288249293 ¦ 5.39471822977 ¦ 4.97457891703 ¦ ¦ 0.0683640870058 ¦ 5.4002174139 ¦ 4.99547588825 ¦ ¦ 0.0703192637772 ¦ 5.41121578217 ¦ 5.0372698307 ¦ ¦ 0.0757871634772 ¦ 5.43981158733 ¦ 5.07906377316 ¦ ¦ 0.0766597757545 ¦ 5.45410948992 ¦ 5.09996074438 ¦ ¦ 0.077317850103 ¦ 5.4684073925 ¦ 5.12085771561 ¦ ¦ 0.0825991083545 ¦ 5.48270529509 ¦ 5.13295596838 ¦ ¦ 0.0841354654428 ¦ 5.49700319767 ¦ 5.14505422115 ¦ ¦ 0.0865525182528 ¦ 5.52559900284 ¦ 5.1692507267 ¦ +---------------------------------------------------+
it sounds want round length figures lower precision.
if case, use in-built rounding function:
(dummy data)
>>> df=pd.dataframe([[1.0000005,4],[1.232463632,5],[5.234652,9],[5.675322,10]],columns=['length','force']) >>> df 33: length force 0 1.000001 4 1 1.232464 5 2 5.234652 9 3 5.675322 10 >>> df['rounded_length'] = df.length.apply(round, ndigits=0) >>> df 34: length force rounded_length 0 1.000001 4 1.0 1 1.232464 5 1.0 2 5.234652 9 5.0 3 5.675322 10 6.0 >>>
then replicate resample().... workflow using groupby:
>>> df.groupby('rounded_length').mean().force 35: rounded_length 1.0 4.5 5.0 9.0 6.0 10.0 name: force, dtype: float64
generally, resample dates. if you're using other dates, there's more elegant solution!
Comments
Post a Comment