c - Number of pairs (a, b) such that a*b < N where a, b, N are integers greater than 0 -


i have code in c calculate number of such pairs::

long long factors(int n) {     int nr = (int) sqrt(n);     int b;      int fix = n - nr * nr - 1;     long long ans = 0;     (b = 2; b <= nr; b++) {         if (n % b == 0) {             ans += n/b - 1;         } else {             ans += n/b;         }     }      if ( fix < 0) {         ans = (2*ans) + n + fix;     } else {         ans = (2*ans) + n + fix - 1;     }      return ans;  } 

this function correctly computes number of such pairs. logic behind it?

illustrative diagram

consider following illustration of case n = 10, each position represents pair of factors counted, a/n, 2 , -/* show stages of algorithm when pair counted (as explained below) , . placeholder mark pairs not counted in stage in question:

  | 1   2   3   4   5   6   7   8   9 --+-~~~-===-===----------------------- 1 ! n2- a2- a2- .2. .2. .2. .2. .2. .2. 2 ! n2- a2- a2- .2. 3 ! n2- a2- a2* 4 | n.. a.. 5 | n.. 6 | n.. 7 | n.. 8 | n.. 9 | n.. 

explanation of algorithm

what algorithm does, is:

  • count columns 2 int (sqrt (n)) (i.e. 3 in above case, marked = , a).
    • column b adds n / b unless b factor of n, in case last not count.
  • add n - 1 first column (marked ~ , n).
  • double this, cover yet uncounted rows (marked ! , 2).
  • subtract region counted twice (marked -), has size nr2, or 1 less if nr2 = n, in case not have counted (nr,nr) (marked * instead of -).

the calculation of fix , last part of code (and ) may rearranged follows, if eliminate calculation , test of fix:

    ans = ans + n - 1;              // add in first column     ans = 2 * ans;                  // double cover rows      if ( nr * nr != n )             // equivalent fix >= 0         ans = ans -  nr * nr;       // subtract square region counted twice     else         ans = ans - (nr * nr - 1);  // did not count (nr,nr) 

commented code

the posted code, mildly adapted (assuming c99 / msvs 2012+) , commented:

long long factors(int n) {     long long ans = 0;        // result return     int nr = (int) sqrt(n);   // highest possible value of lower factor      // count factorisations (a,b) ∈ 2..√n     (int b = 2; b <= nr; b++) {         if (n % b == 0) {    // if b | n ..             ans += n/b - 1;  // .. b*(n/b) = n, count 1..(n/b - 1)         } else {             ans += n/b;      // .. count 1..n/b         }     }      // remaing steps of algorithm, optimised:     // - add n-1 1st column (1,1..(n-1)), giving total (a,b) ∈ 1..√n     // - double, cover reversed pairs (b,a) ∈ 1..√n, b ∈ √n..n     // - subtract nr² or nr²-1, pairs counted twice     int fix = n - nr * nr - 1;     // correcting term, chosen compare 0     if ( fix < 0) {                   // i.e. if nr² = n ..         ans = (2*ans) + n + fix;      // .. ans = 2*(ans + n-1) - (nr² - 1)     } else {         ans = (2*ans) + n + fix - 1;  // .. ans = 2*(ans + n-1) - (nr²)     }      return ans;  } 

Comments

Popular posts from this blog

angularjs - ADAL JS Angular- WebAPI add a new role claim to the token -

node.js - Using Node without global install -

php - CakePHP HttpSockets send array of paramms -