Python Pandas - n X m DataFrame multiplied by 1 X m Dataframe -


i trying multiply 10x7 pandas dataframe 1x7 dataframe in python.

here have:

df = pd.dataframe(np.random.rand(10,7),columns=list('abcdefg')) df_1 = pd.dataframe(np.random.rand(1,7),columns=list('abcdefg')) 

i tried this:

df_prod = pd.dataframe(columns=df) in range(0, df.shape[0]):     df_prod.iloc[i,:] = df[i,:].tolist()*df_1.iloc[0,:].tolist() 

but error message:

traceback (most recent call last):   file "c:\python27\test.py", line 29, in <module>     df_elem.iloc[i,:] = df_val[i,:].tolist()*df_cf.iloc[0,:].tolist()   file "c:\python27\lib\site-packages\pandas\core\frame.py", line 1678, in __getitem__     return self._getitem_column(key)   file "c:\python27\lib\site-packages\pandas\core\frame.py", line 1685, in _getitem_column     return self._get_item_cache(key)   file "c:\python27\lib\site-packages\pandas\core\generic.py", line 1050, in _get_item_cache     res = cache.get(item) typeerror: unhashable type 

i need multiply rows of df df_1.

i need:

df.iloc[0,:] * df_1 df.iloc[1,:] * df_1 df.iloc[2,:] * df_1 df.iloc[3,:] * df_1 . . . . df.iloc[9,:] * df_1 

is there simple way achieve multiplication in python?

if want multiplication row-wise try this:

%timeit df_prod = df.apply(lambda x: x * df_1.ix[0],axis = 1) 100 loops, best of 3: 6.21 ms per loop 

however faster multiplication column-wise:

%timeit = df_prod = pd.dataframe({c:df[c]* df_1[c].ix[0] c in df.columns}) 100 loops, best of 3: 2.4 ms per loop 

Comments

Popular posts from this blog

angularjs - ADAL JS Angular- WebAPI add a new role claim to the token -

node.js - Using Node without global install -

php - CakePHP HttpSockets send array of paramms -